Přejít k obsahu


An implicit discontinuous Galerkin scheme for a numerical solution of transonic flow problems

Citace:
PECKA, A., BUBLÍK, O., VIMMR, J. An implicit discontinuous Galerkin scheme for a numerical solution of transonic flow problems. In Computational mechanics - EXTENDED ABSTRACTS. Plzeň: Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň, 2015. s. 79-80. ISBN: 978-80-261-0568-8
Druh: STAŤ VE SBORNÍKU
Jazyk publikace: eng
Anglický název: An implicit discontinuous Galerkin scheme for a numerical solution of transonic flow problems
Rok vydání: 2015
Místo konání: Plzeň
Název zdroje: Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň
Autoři: Mgr. Aleš Pecka M.Sc. , Ing. Ondřej Bublík Ph.D. , Doc. Ing. Jan Vimmr Ph.D.
Abstrakt EN: This study is concerned with an implementation of the discontinuous Galerkin finite element method (DGFEM) combined with an appropriate implicit scheme for the numerical solution of transonic flow problems. The DGFEM, which is designed for the spatial discretisation, has the advantage of being conservative and robust and provides an arbitrarily high order of approximation. With regards to the temporal discretisation, explicit method are limited by the CFL condition, which becomes even more restrictive for high orders of DGFEM. For this reason, we instead employ one of the implicit method with a much larger region of stability, even though its implementation is more complicated. The developed implicit DGFEM solver is validated for two test problems, namely a transonic flow in the GAMM channel and around the NACA aerofoil.
Klíčová slova

Zpět

Patička