Přejít k obsahu


Numerical solution of a secular equation for Rayleigh waves in a thin semi-infinite medium made of a composite material

Citace:
ČERV, J., ADÁMEK, V., VALEŠ, F., PARMA, S. Numerical solution of a secular equation for Rayleigh waves in a thin semi-infinite medium made of a composite material. In Engineering Mechanics 2016, Book of Full Texts. Prague: Institute of Thermomechanics AS CR, 2016. s. 122-125. ISBN: 978-80-87012-59-8 , ISSN: 1805-8248
Druh: STAŤ VE SBORNÍKU
Jazyk publikace: eng
Anglický název: Numerical solution of a secular equation for Rayleigh waves in a thin semi-infinite medium made of a composite material
Rok vydání: 2016
Místo konání: Prague
Název zdroje: Institute of Thermomechanics AS CR
Autoři: doc. Ing. Jan Červ CSc. , Ing. Vítězslav Adámek Ph.D. , Ing. František Valeš CSc. , Ing. Slavomír Parma
Abstrakt EN: The traditional way of deriving the secular equation for Rayleigh waves propagating along the stress-free edge of a thin semi-infinite composite is presented. It means that it is necessary to find a general steady-state solution that vanishes at infinity. The secular equation is then obtained by vanishing of the surface traction at the stress-free edge. For the solution of such secular equation it is necessary to precompute some roots of characteristic quartic equation. The method shown in this paper, based on displacement formulation, leads to the so-called implicit secular equation. The numerical approach to the solution is shown.
Klíčová slova

Zpět

Patička