Přejít k obsahu


Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe

Citace:
PITOŇÁK, M., ŠPRLÁK, M., TENZER, R. Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe. GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, roč. 209, č. 2, s. 799-812. ISSN: 0956-540X
Druh: ČLÁNEK
Jazyk publikace: eng
Anglický název: Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe
Rok vydání: 2017
Autoři: Ing. Martin Pitoňák Ph.D. , Michal Šprlák , Ing. Robert Tenzer Ph.D.
Abstrakt CZ: V tomto článku zkoumame numerické možnosti čtyř metod na získávaní tíhových anomálií z prvků gravitačního tenzora třetího stupně. První metoda je založena na regionální inverzi bez uvážení vlivu vzdálených zón. V druhé metodě rozdělujeme integrál na dvě části, vliv blízkých a vliv vzdálených zón. V třetím a čtvrtím přístupu redukujeme vstupná data o gravitační účinek tíhového pole do stupně 80 a o gravitační účinek izostaticky kompenzované topografie a atmosféry
Abstrakt EN: We investigate a numerical performance of four different schemes applied to a regional recovery of the gravity anomalies from the third-order gravitational tensor components (assumed to be observable in the future) synthetized at the satellite altitude of 200 km above the mean sphere. The first approach is based on applying a regional inversion without modelling the far-zone contribution or long-wavelength support. In the second approach we separate integral formulas into two parts, that is, the effects of the third-order disturbing tensor data within near and far zones. Whereas the far-zone contribution is evaluated by using existing global geopotential model (GGM) with spectral weights given by truncation error coefficients, the near-zone contribution is solved by applying a regional inversion. We then extend this approach for a smoothing procedure, in which we remove the gravitational contributions of the topographic-isostatic and atmospheric masses. Finally, we apply the remove-compute-restore (r-c-r) scheme in order to reduce the far-zone contribution by subtracting the reference (longwavelength) gravity field, which is computed for maximum degree 80. We apply these four numerical schemes to a regional recovery of the gravity anomalies from individual components of the third-order gravitational tensor as well as from their combinations, while applying two different levels of a white noise. We validated our results with respect to gravity anomalies evaluated at the mean sphere from EGM2008 up to the degree 250. Not surprisingly, better fit in terms of standard deviation (STD) was attained using lower level of noise.
Klíčová slova

Zpět

Patička