Přejít k obsahu


Rationale and Myth of Thermoanalytical Kinetic Patterns: How to Model Reaction Mechanisms by the Euclidean and Fractal Geometry and by Logistic Approach

Citace:
ŠESTÁK, J., AVRAMOV, I. Rationale and Myth of Thermoanalytical Kinetic Patterns: How to Model Reaction Mechanisms by the Euclidean and Fractal Geometry and by Logistic Approach. In Thermal Physics and Thermal Analysis. Cham, Switzerland : Springer International Publishing, 2017, s. 295-318. ISBN: 978-3-319-45897-7
Druh: KAPITOLA V KNIZE
Jazyk publikace: eng
Anglický název: Rationale and Myth of Thermoanalytical Kinetic Patterns: How to Model Reaction Mechanisms by the Euclidean and Fractal Geometry and by Logistic Approach
Rok vydání: 2017
Místo konání: Cham, Switzerland
Název zdroje: Springer International Publishing
Autoři: Prof. Ing. Jaroslav Šesták DrSc., dr. h. c. , Isak Avramov
Abstrakt CZ: Modelování struktury má velkou historii počínající Řeckem až do současného Penelose. Geometrické základy vycházejí ze symetrických a asymetrických schématů. Důležitá je vztyčná plocha fází a její geometrické znázornění. Použití atypické fraktální geometrie je výhodné a poskytuje možnost využití neintegrálních hodnot. Z logistického přístupu vyplývá široce používaná forma SB - rovnice.
Abstrakt EN: Modeling tradition is reviewed within its historical maturity from Greek Plato to modern Penrose. Metaphors in non-isothermal kinetics achieved a wide application mostly employing models derived by means of undemanding isothermal descriptions. Geometrical basis of such modeling is revised and discussed in terms of symmetrical and asymmetrical (pentagonal) schemes. The properties of interface (reaction separating line) are found decisive in all cases of heterogeneous kinetics and can be acquainted with defects. The use of yet atypical fractal geometry is accredited, and associated formal kinetic models based on non-integral power exponents are acknowledged. Mathematical commencement and impact of logistic models are used highlighting the Sesták–Berggren (SB) equation and the impact of logistic approach as a generalized exploit. Typical erroneous beliefs are dealt with showing common kinetic misinterpretation of measured data and associated mathematical manipulability of kinetic equations. The correction of a measured DTA peak is mentioned assuming the effects of heat inertia and temperature gradients. The chapter contains 117 references.
Klíčová slova

Zpět

Patička